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Comparative Effects of the Sorghum bmr-6 and bmr-12 Genes:
I. Forage Sorghum Yield and Quality

A. L. Oliver, J. F. Pedersen,* R. J. Grant, and T. J. Klopfenstein

ABSTRACT complex linkages in lignin are detrimental to the digest-
ibility of plant cell walls by livestock (Humphreys andBrown midrib (bmr) forages usually contain less lignin and exhibit
Chapple, 2002). The lignin content of the whole maizeincreased digestibility. Recent research has identified the modifica-

tions in biochemical pathways resulting from bmr mutations. In sor- plant is less than that of typically fed forage sorghums.
ghum [Sorghum bicolor (L) Moench.], bmr-6 has been linked to a Chemical and genetic approaches have been em-
decrease in cinnamyl alcohol dehydrogenase (CAD) activity. The ployed to improve forage fiber digestibility by reducing
allelic bmr-12 and bmr-18 genes decrease caffeic acid O-methyl trans- the amount of lignin or the extent of lignin cross linking
ferase (OMT) activity. There has been only limited research compar- with cell wall carbohydrates. Brown midrib forage geno-
ing bmr genes to each other and wild type in isogenic sorghum. The types usually contain less lignin and have altered lignin
objective of this study was to determine the impact of bmr-6 and bmr-12

chemical composition (Bucholtz et al., 1980; Cherneyon forage yield and quality in these genetic backgrounds: ‘Atlas’,
et al., 1991; Vogel and Jung, 2001). To date, genetic‘Early Hegari-Sart’, ‘Kansas Collier’, and ‘Rox Orange’. Height, lodg-
control of the lignification process through manipula-ing, neutral detergent fiber (NDF), acid detergent fiber (ADF), acid
tion of the bmr trait has offered the most direct anddetergent lignin (ADL), in vitro NDF digestibility (IVNDFD), and

dry matter (DM) yield were measured in a split-plot experiment repli- productive approach to reducing lignin content and in-
cated four times in each of four environments with lines being whole- creasing digestibility of forage sorghums (Gerhardt et
plots and genotypes (wild type, bmr-6, and bmr-12) being subplots. al., 1994). Brown midrib mutants of maize have been
Brown midrib genes generally had negative agronomic impact, but known for nearly four decades (Jorgenson, 1931) and
these were not uniformly expressed across backgrounds. The bmr-6 since then the mutation has been observed in pearl
gene generally resulted in a shorter plant and less DM yield, but did millet [Pennisetum americanum (L.) Leeke] (Cherney et
not reduce ADL. The bmr-12 gene generally resulted in reduced ADL,

al., 1988), sorghum (Porter et al., 1978), and sudangrasslater maturity, and reduced or equivalent DM yield when compared
[Sorghum � drummondii (Steud.) Millsp. & Chase]with the wild type. There is a more digestible NDF fraction in both
(Fritz et al., 1981). In situ and in vitro digestion studiesbmr-6 and bmr-12 forage sorghums. When all data are considered in
have shown bmr forages to have greater digestion thanaggregate, the bmr-12 gene appears superior to the bmr-6 gene in

terms of less negative impact on agronomic performance and greater their normal counterparts.
positive impact on ADL content and fiber digestibility. Brown midrib mutations in sorghum were induced by

Porter et al. (1975) by soaking sorghum seeds in diethyl
sulfate. This resulted in 19 bmr mutant lines. Of these,
three were selected as most agronomically acceptableForage sorghum is an important annual forage source
(Fritz et al., 1988) and form the basis for considerablein the midwestern and plains regions of the USA
additional research and line development using theand can be planted later than maize (Zea mays L.). It
three bmr sorghum genes bmr-6, bmr-12, and bmr-18.uses water more efficiently, yields greater biomass, and
Further examination has yielded information indicatingprovides an acceptable yield when exposed to drought
bmr-12 and bmr-18 genes are allelic (Bittinger et al.,(Sanderson et al., 1992). However, maize hybrids typi-
1981), and that the bmr-6 and the bmr-12 and bmr-18cally have greater dry matter digestibility than forage
genes are located at two independent loci (Gupta, 1995).sorghums. Lignin, found in plant cell walls, is the second

Recent research has identified modifications in bio-most abundant polymer in nature after cellulose (Jung
chemical pathways which result from the bmr mutations.and Ni, 1998), and while being beneficial to plants, the
Two separate enzymes exhibit reduced activity as the
result of bmr mutations. In sorghum, the bmr-6 geneMention of trade names or commercial products in this article is

solely for the purpose of providing specific information and does not has been linked to a decrease in lignin due to a decrease
imply recommendation or endorsement by the University of Nebraska in CAD activity (Bucholtz et al., 1980). The allelic bmr-
or the U.S. Department of Agriculture. 12 and bmr-18 genes decrease caffeic acid OMT activity

(Bout and Vermerris, 2003), specifically, via a premature
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added to the post-emergence application at 0.28 kg ha�1 for1987). Brown midrib lines of corn have improved NDF
velvetleaf [Abutilon theophrasti (Medik)] control. Grasshop-digestibility in vitro (Greenfield et al., 2001), greater
pers [Dissosteira Carolina (Linnaeus)] were controlled by ap-apparent DM, ADF, and organic matter digestibility
plication of chloropyrifos [phosphorodithioic acid, O,O-diethylwhen compared to isogenic wild-type lines (Tine et al.,
O-(3,5,6-trichloro-2-pyridyl) ester] on 18 and 24 July 2002 and2001). Previous research (Aydin et al., 1999) observed 17 July 2003. Five centimeters of supplemental irrigation was

greater milk production for Holstein dairy cows fed bmr applied at Ithaca via overhead sprinklers on 24, 28 June and
sorghum versus wild-type forage sorghum, with milk 5, 7 August in 2002. In 2003, 2.5 cm of supplemental irrigation
production similar to cows fed corn silage. was applied on 24 July and 14 and 28 August, and 5 cm of

However, considerable variation in forage quality pa- supplemental irrigation was applied on 4 and 7 August.
Days to flowering was recorded at 50% anthesis. Percentagerameters, including NDF, ADF, and digestibility, has

of plants lodged in each plot was estimated visually immedi-also been shown to exist among different wild-type (not
ately before harvest. Plots were harvested using a commercialbmr) sorghum lines (Lema et al., 2000) which could
silage cutter modified for small plot use (Pedersen and Moore,confound comparisons among bmr genes. There has
1995). The Lincoln location was harvested 5 September 2002been only very limited research comparing individual and 29 September 2003. Ithaca plots were harvested 11 Sep-

bmr genes to isogenic wild-type sorghum (Hanna et al., tember 2002 and 25 September 2003. All plots were at hard
1981; Thorstensson et al., 1992), and even less research dough or were fully mature. Plot wet weights were recorded
comparing bmr genes to each other in similar or iso- and subsamples collected from the middle row of each plot
genic backgrounds. for moisture and forage quality analyses.

Our previous research compared the effect of two
Sample Analysisforage sorghum hybrids, one with bmr-6 and one with

bmr-18, and found bmr hybrids did not elicit the same Subsamples were oven dried at 60�C, dry weights recorded,
production response when fed to lactating dairy cattle and ground through a Wiley mill (Arthur H. Thomas Co., Phila-

delphia, PA) to pass a 1-mm screen. Each sample was analyzed(Oliver et al., 2004). However it was not possible to
sequentially for NDF, ADF, and ADL using an ANKOM 200separate the effect of bmr genes from hybrid in that
fiber analyzer (ANKOM Tech. Corp., Fairport, NY) (Vogelstudy. To date, there has been no comparison among
et al., 1999). Ground sample was weighed into ANKOM F57the bmr genes to determine if one of the genes is truly
filter bags (ANKOM Tech. Corp., Fairport, NY), 0.5 � 0.0025 g,superior in an array of forage sorghum backgrounds. and the bags were heat sealed. The samples were then sus-

Therefore, the objective of this study was to determine pended in 1900 mL of NDF detergent (Midland Scientific Inc.,
the impact of the bmr-6 and bmr-12 genes on forage Omaha, NE) with 3 mL of heat stable �-amylase (ANKOM
yield and quality in a broad set of forage sorghum lines. Tech. Corp., Fairport, NY). Once the temperature reached

95�C, samples were agitated for 60 min. The heat and agitation
were then stopped and the NDF solution was drained fromMATERIALS AND METHODS
the fiber analyzer and 2 L of 95�C distilled water and 3 mL

Near-isogenic versions of four forage sorghum lines (Atlas, of heat stable �-amylase where added, agitated for 5 min, and
Early Hegari-Sart, Kansas Collier, and Rox Orange) were drained. Three rinses of 3 min with 2 L of 95�C distilled water
created by crossing each to N121 (Gorz et al., 1990), a bmr-6 followed. Samples were transferred to a wire basket, rinsed
source, and F220 or F324 (donated to our project by the late with 25�C distilled water, and dried for 12 h in a 100�C oven.
Robert Kalton), bmr-12 sources, followed by four backcrosses Following weigh back, samples were refluxed in ADF solution
to the recurrent parents with selection for the bmr phenotype. (Midland Scientific Inc., Omaha, NE) for 60 min at 95�C. The
Field trials using the recurrent parents and their counterparts samples were rinsed for 5 min with 95�C water and then four
near-isogenic for bmr-6 and bmr-12 were conducted in 2002 more rinses of 3 min each were done. Samples were again
and 2003 at the University of Nebraska Field Laboratory, dried in a wire basket for 12 h in a 100�C oven and weighed.
Ithaca, NE, (Sharpsburg silty clay loam; fine, smectitic, mesic ADL was performed by submerging 25 samples in 333 mL of

72% sulfuric acid for 3 h. Samples were stirred every 30 minTypic Argiudoll) and Lincoln, NE [Kennebec silt loam (fine-
to ensure uniform dispersion of the acid. Samples were rinsedsilty, mixed, superactive, mesic Cumulic Hapludoll)]. Individ-
with 95�C distilled water and 25�C distilled water until theual plots consisted of three 7.6-m rows spaced 76 cm apart.
rinse water reached a neutral pH. The samples were then driedEach plot was seeded with a precision vacuum planter cali-
in a wire basket for 12 h in a 100�C oven.brated to deliver 120 seeds per row (240 000 seeds ha�1). The

In vitro NDF digestion was performed using ANKOM ru-near-isogenic sets (e.g., Atlas, Atlas bmr-6, Atlas bmr-12) were
men fermenters (Model No: Daisy II; ANKOM Tech. Corp.,planted as a block to minimize border effects.
Fairport, NY). ANKOM F57 filter bags (25-�m pore size) ofThe experiments were planted 20 May 2002 and 21 May
0.55 � 0.0025 g of sample were heat sealed and incubated for2003 in Lincoln and 22 May 2002 and 2003 in Ithaca. Nitrogen
30 h in 1600 mL of rumen inoculum and 400 mL of rumenfertilizer was applied preplant at both locations at 157 kg ha�1.
buffer at a pH of 6.8 (Goering and Van Soest, 1970). RumenAt the Lincoln location, propachlor [2-chloro-N-(1-methyl-
inoculum was collected from a steer being fed a mixed dietethyl)-N-phenylacetamide] and atrazine [6-chloro-n-ethyl-N�-
12 h post-feeding. Thirty-six bags were incubated in each glass(1-methylethyl)-1,3,5-triazine-2,4,diamine], applied at 3.36 and
jar and were purged with CO2 before being placed in the1.1 kg ha�1, respectively, were applied immediately after plant-
incubator. After 30 h, samples were removed and frozen. NDFing for weed control. No supplemental irrigation was applied
analysis was then preformed on the digested sample followingat Lincoln. At the Ithaca location, atrazine was applied at 2.2
the same procedures described previously.kg ha�1 immediately after planting, followed by an application

of quinclorac (3,7-dichloro-8-quinolinecarboxylic acid) and at- Statistical Analysisrazine at 0.37 kg ha�1 and 1.1 kg ha�1, respectively approxi-
mately 14 d post-emergence. In 2002, bentazon [3-(1-methyl- Experimental design was a split-plot replicated four times

in each of four environments with lines being whole-plots andethyl)-1H-2,1,3-benzothiadiazin 4(3H)-one-2,2-dioxide] was
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genotypes (wild type, bmr-6, and bmr-12) being subplots. The strates the importance of genetic background on bmr
data were analyzed using the PROC MIXED procedure of gene expression.
SAS (SAS Institute, Inc., 1999). The model statement included Height was significantly affected by bmr genes. Line �
line, gene, and the line � gene effects. Environments and gene interactions were not significant. In these four
replication were considered random. The REPEATED func- forage sorghums, wild-type lines were generally tallertion of PROC MIXED was used to account for lack of homo-

than their bmr-12 near-isolines, which were taller thangeniety of variance among the environments. F-protected least
their bmr-6 near-isolines. Previous studies indicated thatsignificant differences were used to determine differences among
when height was measured at the time of floweringlines and genes.
bmr-6 plants were shorter than the wild type (Anterola
and Lewis, 2002). The current study confirmed thoseRESULTS AND DISCUSSION
results with all bmr-6 near-isolines being shorter than

In side-by-side plots, the midribs of the bmr-6 near- their wild-type counterparts at maturity.
isolines exhibited more intense brown coloration than There were significant gene effects and line � gene
the bmr-12 near-isolines (Fig. 1). There was a significant interactions for yield. At harvest the wild type generally
effect of the environment on the measured traits as yielded the most DM. Averaged over lines, bmr-12 near-
expected. Since our objective was to determine the ef- isolines yielded 10% less than the wild-type near-iso-
fects of the bmr genes across multiple environments and lines and bmr-6 near-isolines yielded 15% less than the
multiple genetic backgrounds, we accounted for envi- wild-type near-isolines. The wild-type near-isolines had
ronment, line, and environment interactions in our model greater DM yield than bmr-6 near-isolines in all linesand report the pooled gene and gene � line means. except Rox Orange. In the Early Hegari-Sart back-The bmr-12 near-isolines reached 50% anthesis an

ground, there was no difference between the wild-typeaverage of 3 d later than bmr-6 and 4 d later than wild-
and bmr-12 near-isolines for DM yield. Previous re-type near-isolines in forage sorghum (Table 1). There
search has found decreased yield associated with bmrwere significant gene effects and line � gene interac-
maize (Miller et al., 1983). Yield differences due to bmrtions for days to 50% anthesis. The bmr-12 near-isolines
genes in sorghum have not been reported previously,reached anthesis later than either the wild-type or bmr-6
so the impact on yield was assumed to be similar to thatnear-isolines of Atlas, Early Hegari-Sart, and Rox Or-
of maize (Kalton, 1988). The current study indicatesange, and days to 50% anthesis was equivalent in Atlas
bmr genes do generally elicit a similar yield responsebmr-6 and bmr-12 near-isolines. The effect of bmr-6
in both maize and forage sorghum. However in somecompared to wild type was inconsistent, with days to
genetic backgrounds, yields of either bmr-6 or bmr-1250% anthesis being equivalent in Rox Orange, greater
near-isolines were equivalent to their wild-type counter-for bmr-6 in Early Hegari-Sart and Kansas Collier, and
parts indicating that yield reduction associated with bmrgreater for wild type in Atlas. Previous research has
genes is not absolute in forage sorghum.found flowering time to differ in bmr plants when com-

Differences in observed lodging were not attributablepared with wild types. Vermerris et al. (2002) found
to bmr genes. Line had a significant impact on the per-bmr-6 to flower later than the wild type while bmr-18
centage lodging, but there was no line � gene inter-(allelic to bmr-12) flowered at the same time as the wild
action.type. The different flowering response due to line �

gene interaction observed in our study clearly demon- Stalks of maize which express a bmr gene have a 17

Fig. 1. Rox Orange bmr-6 (left) and Rox Orange bmr-12 (right).
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to 26% decrease in the crushing strength of the stalk bmr-18 forage sorghum NDF content did not differ from
(Zuber et al., 1977). Therefore, lodging problems are a wild-type forage sorghum (non-isogenic lines). Thor-
typically associated with the inclusion of bmr genes. stensson et al. (1992) observed an increase in NDF con-
Minor lodging did occur in our forage sorghum plots tent of conventional sorghum when compared to bmr-6.
but averaged only 23% lodged plants. Previous research However, the same study did not detect a difference be-
(Bean et al., 2002) reported bmr sorghum to be up tween a bmr-18 line and its normal counterpart.
to 87% lodged. Lodging is greatly dependent on the A strongly significant line � gene interaction was
environmental conditions, with conditions such as rain- detected for ADF content. Wild-type Atlas had greater
fall and wind having considerable impact on lodging. ADF than either bmr near-isolines. No differences in
Anecdotal observations from producers, and during ADF attributable to bmr genes were observed in Kansas
seed increase of the near-isolines used in this study, Collier or Rox Orange. In Early Hegari-Sart, the bmr-
indicate increased risk of lodging in bmr forage sor- 12 near-isoline was equivalent to wild type and higher
ghums when compared to wild-type forage sorghums. than the bmr-6 near isoline for ADF content. Cherney

et al. (1991) summarized sorghum fiber research and
Forage Composition concluded there is considerable variation in fiber com-

position among conventional and bmr sorghum hybrids.The fiber analysis of the bmr near-isolines showed
The current study confirms the importance of the line �that bmr genes had no affect on NDF content of forage
gene interaction in contributing to the considerable vari-sorghum. Line effects were significant, but line � gene
ation in fiber composition among forage sorghum lines.were not significant. These findings agree with previous

research (Aydin et al., 1999; Grant et al., 1995) in which Gene effects were significant for ADL content of

Table 1. Average and individual effect of bmr genes on agronomic and forage quality traits in four forage sorghum lines.

Wild type bmr-6 bmr-12 SEM

Days to 50% anthesis (d)
Mean 74 b† 75 b 78 a 2
Atlas 80 b 77 c 82 a 2
Early Hegari-Sart 71 c 74 b 78 a 2
Kansas Collier 76 b 77 a 77 a 2
Rox Orange 71 b 70 b 74 a 2

Height (cm)
Mean 215 a 194 c 211 b 12
Atlas 238 a 216 c 230 b 12
Early Hegari-Sart 153 a 139 b 156 a 12
Kansas Collier 236 a 214 c 228 b 12
Rox Orange 232 a 205 b 230 a 12

Lodging (%)
Mean 23 23 22 8
Atlas 36 36 36 9
Early Hegari-Sart 7 7 7 9
Kansas Collier 18 19 18 9
Rox Orange 30 29 29 9

DM‡ yield (t ha�1)
Mean 15.0 a 12.8 c 13.5 b 1.0
Atlas 15.9 a 14.5 b 13.6 c 1.1
Early Hegari-Sart 13.4 a 10.1 b 13.8 a 1.1
Kansas Collier 15.4 a 11.7 c 14.5 b 1.1
Rox Orange 15.4 a 14.8 a 12.0 b 1.1

NDF (g kg�1)
Mean 454 449 463 12
Atlas 484 460 475 14
Early Hegari-Sart 458 433 457 14
Kansas Collier 437 468 463 14
Rox Orange 436 434 458 14

ADF (g kg�1)
Mean 269 a 262 b 268 a 11
Atlas 305 a 286 b 284 b 12
Early Hegari-Sart 263 ab 256 b 270 a 12
Kansas Collier 260 273 258 12
Rox Orange 246 233 262 12

ADL (g kg�1)
Mean 70 a 67 a 61 b 10
Atlas 75 a 72 ab 65 b 10
Early Hegari-Sart 74 a 76 a 61 b 10
Kansas Collier 65 62 62 10
Rox Orange 66 a 57 b 55 b 10

IVNDFD (g kg�1)
Mean 646 b 666 a 655 a 9
Atlas 604 b 646 a 630 a 11
Early Hegari-Sart 651 662 655 11
Kansas Collier 658 658 663 11
Rox Orange 671 b 696 a 672 b 11

† Means in rows with differing superscripts differ at P � 0.05 using an F-protected LSD.
‡ DM, dry matter; NDF, neutral detergent fiber; ADF, acid detergent fiber; ADL, acid detergent lignin; IVNDFD, 30-h in vitro NDF digestibility.
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mature forage sorghum, and there was no line � gene be combined with acceptable agronomic performance
is needed.interaction. The bmr-12 gene resulted in the least

amount of ADL. There was no difference in the ADL There is a more digestible NDF fraction in both bmr-6
and bmr-12 forage sorghums, corresponding to a greatercontent of wild-type and bmr-6 near-isolines. Previous

research indicates both bmr-6 and bmr-18 forage sor- digestible DM. When all data are considered in aggregate,
the bmr-12 gene appears superior to the bmr-6 gene inghum have decreased ADL when compared to wild-

type forage sorghum silage (Gerhardt et al., 1994; Grant terms of less negative impact on agronomic performance
and greater positive impact on ADL content and fi-et al., 1995; Lam et al., 1996; Thorstensson et al., 1992).

The current study confirms that bmr-12 forage sorghum ber digestibility.
near-isolines have significantly less ADL than their
wild-type near-isogenic counterparts, and unexpectedly REFERENCES
demonstrates that bmr-12 forage sorghum near-isolines
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